

Naval Postgraduate School Total Ship Systems Engineering Program

Arsenal Ship Student Design Summary

Prof. Charles N. Calvano

NPS TSSE Program

Objective

Provide a broad based, systems engineering and design oriented curriculum....

focusing on the warship as a total engineering system....

including hull, mechanical, electrical (HM&E) and combat systems.

TSSE and Arsenal Ship

"I want you to do an Arsenal Ship design because I'd like to have it looked at by a knowledgeable Navy person with input from young, innovative officers"

> Honorable John Douglass ASN (RD&A) at NPS, March 1996

THE PEOPLE

15 Students

Service

10 USN

1 Aviator

1 Surface Warfare Officer

6 Engineering Duty Officers

(former SWO)

2 Engineering Duty Officers

(former Sub)

4 USCG naval engineers

1 USMC infantry/light armor officer

Coaches:

Assoc. Prof. Calvano (Ship Design/HM&E)

Assoc. Prof. Harney (Combat Systems)

- <u>Curriculum/Degree</u>

7 Naval/Mechanical eng

4 Combat Sys Science

4 Elect Sys Eng

Problem Statement

- First Iteration of a design for an Arsenal Ship
- Primary Constraints
 - 550 Million dollars Unit Sailaway Price
 - 50 Crew Max
 - Nearly Unsinkable Survivability
 - 22 kt. Sustained Speed
 - Approximately 500 Missile Cells

Design Philosophy (Priorities)

- Acquisition Cost and Life Cycle Cost
- Mission Effectiveness
- Survivability and Self Defense
- Reduction in Manning
- Reliability, Maintainability and Availability
- Commonality: Other Platforms, Commercial off the Shelf (COTS), and Exploiting DoD Investments
- Upgradeability and Modularity
- Minimized Maintenance
- Environmental Impact
- Habitability

Manning Considerations

- Watchstander/Maintainer approach to basic manning
 - Commercial ship basis; justify additions
- Minimization of special evolutions
 - "Oiler" design left sufficient tankage for 75,000 nm @ 15 kts
 No need to refuel at sea
 Manpower and dollar savings (eliminate associated systems)
 - No traditional deck gear (anchoring systems, boat davits, etc.)
 Keel-mounted anchor w/ internal machinery
 Single RIB with launching crane housed in superstructure
- High degree of dependency on automation

Manning Considerations

- "Blue/Gold" approach to crew assignment
 - Crew integrity maintained
 - Eighteen month committment to program
 - "Arsenal Ship School" for off-ship training and BG workups
- Recognition of need for selective screening of crew
 - Senior enlisted cadre; few "apprentices"
 - "Arsenal Ship School" role
- Admin ashore at base
- Off watch crew DC party concept

Manning-Reduction Automation

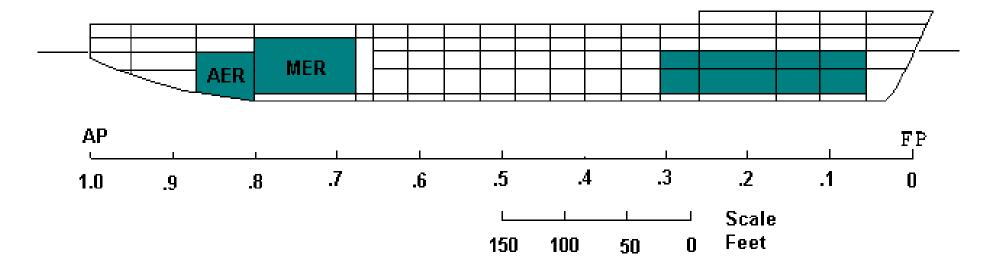
- Integrated Bridge System (IBS)
- Standard Monitoring and Control System (SMCS)
- Damage Control System(DCS)
- Integrated Condition Assessment System (ICAS)
- ◆ Two Wire Automatic Remote Sensing Evaluation System

Table of Organization

LINE #	BILLET	RANK	QUANTITY	WATCHSTANDER	COMMENTS
1	CAPTAIN	O-5	1	NO	
2	EXECUTIVE/MAINTENANCE OFFICER	0-4	1	YES	CSOW
3	WEAPONS OFFICER	0-4	1	YES	CSOW
4	OFFICER OF THE DECK	O-3	4	YES	DEPARTMENT HEADS
5	JOOD	E-7/8	4	YES	DIVISION OFFICERS
6	COMM SPECIALIST	E-5/6	4	YES	
7	ENGINEERING OFFICER OF THE WATCH	E-7/8	4	YES	DIVISION OFFICERS
8	EW SPECIALIST	E-5/6	4	YES	
9	DECK FORCE	E-5/6	5	NO	
10	HM&E FORCE	E-4/5	5	NO	
11	COMBAT SYSTEM FORCE	E-4/5/6/7	8	NO	ONE E-7 & SEVEN E-4/5/6
12	CORPSMAN	E-5/6	1	NO	
13	MESS SPECIALIST	E-4/5/6	2	NO	ONE E-5/6 & ONE E-4/5
		OFFICER	7		
		CHIEFS	9		
		ENLISTED	28		
			44		

Survivability Features (1)

- Detonation of 32 or 64 VLS/CCL is overmatching damage
 - Eight-cell unit max desirable to avoid ship-threatening damage
- 64 installations of 8 cells, with protection and separation
- This takes real estate
- Drives to larger ship
- Modified repeat of AO 201 double hull tanker
 - Sufficient deck space
 - Synergistic impacts
 Mass/tonnage
 double hull


Survivability Features (2)

- Eight-cell launcher modules in 1" armor boxes
 - Standoff from box to cells
 - Separation between boxes
- Use of Concentric Canisterized Launcher (vice VLS)
 - Improved Shock; deck collar vice bottom foundation
 - Improved fragmentation/anti-fratricide features
- Double hull used for concrete "side armor"
- Severe reduction of topside mass and clutter
- Use of Foam-in-Salvage as damage mitigation mechanism

Foam in Salvage Coverage

Survivability-Related Naval Architectural Features

- Double Hull Design
- Missile Cell Separation
- ◆ 17 Transverse Bulkheads
- Concrete Ballast as Armor in Double Hull
- Reduced Signature

Arsenal Ship Combat System

- ◆ SM-2, TLAM, ATACM, VGAS
- Concentric Canisterized Launcher
- CEC/link 16/link 22
- C4I: Joint Maritime Communications Strategy
- SSDS, RAM, Nulka, IR decoys, Rubber Duck, AIEWS

Remote Firing Capability

- Response times equivalent to control ship
- Seamless joint operations
- Must allow for simultaneous control of missiles from multiple platforms
- Cooperative Engagement Capability
- Advanced Tactical Weapon Control System
- Vertical Launching System

CEC

- Provides necessary bandwidth
- Proven reliability
- Known hardware
- Easily modified to handle different data types (processor)

ATWCS

- Next generation weapon control system
- Open architecture, COTS
- Expanded storage capacity
- Ethernet networks and fiber optics
- Accommodate all missiles and guns
- Supports time critical data

Network

- Survivable Adaptable Fiber Optic Embedded Network (SAFENET) and Fiber Distributed Data Interface (FDDI)
- 100 Mbytes/sec, 240 taps
- Cheap, commercial availability/standards
- Government Open System Interconnection Profile (GOSIP)

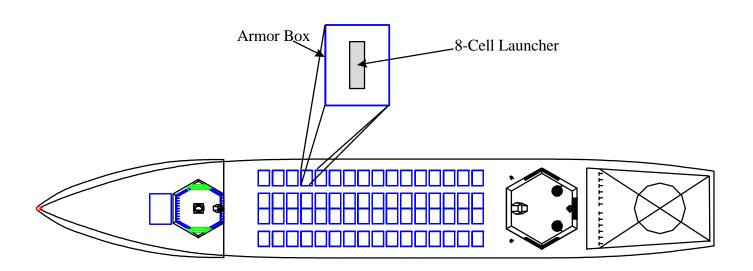
Propulsion Plant

- COLT PIELSTICK 4.2V18
- ◆ 30,000 HP INSTALLED
- MECHANICAL TRANSMISSION
- ◆ PTO 2500 KW
- CONTROLLABLE PITCH PROPELLERS
 - twin screw

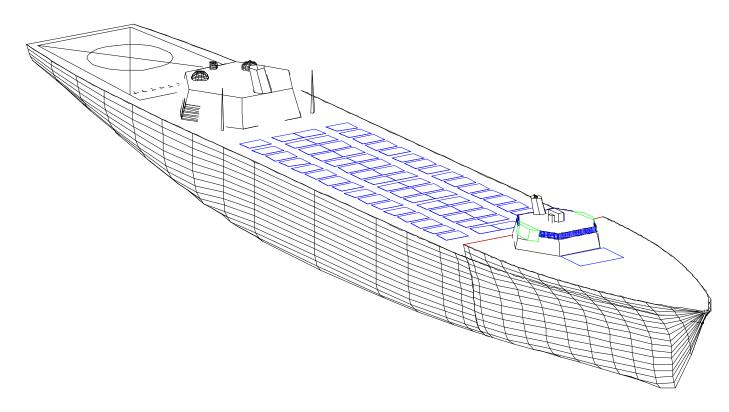
Electrical Plant

- AC POWER GENERATION
- ZONAL DISTRIBUTION 15 ZONES 3 BUSSES
- 2 SS POWER TAKE OFF GENERATORS
- 3 SS DIESEL GENERATORS
- ◆ 12,500 KW INSTALLED

Arsenal Ship Characteristics


•	LOA	667 ft	•	Beam	97 ft
•	Draft	34 ft	•	Displacement	39,500 LT
•	Range	75,800 nm	•	Floodable Length	3 Compts
•	Endurance	210 Days	•	KG	29.75 ft
•	Installed SHP	57,750 HP	•	GM	11.20 ft

USNS T-AO CLASS Oiler


Arsenal Ship

Arsenal Ship

